1.5.11

POLIEDROS en el NEOLITICO

Los Sólidos Platónicos: Historia de los Poliedros Regulares


 Los poliedros en el Neolítico

Los poliedros regulares son sólidos limitados por idénticos polígonos regulares, en los que concurren en cada vértice igual número de caras.

El significado simbólico, místico y cósmico de los poliedros regulares se remonta a los primeros estadios de la Civilización.
Critchlow (1979) da una prueba fehaciente de que ya eran conocidos por los pueblos neolíticos y por las primeras culturas históricas europeas, como muestran las siguientes ilustraciones:



Sólidos regulares neolíticos de Escocia (Ashmolean Museum de Oxford).
Según Critchlow (1979), «lo que tenemos son objetos que indican claramente un grado de dominio de las matemáticas que hasta la fecha todo arqueólogo o historiador de la matemática le había negado al hombre neolítico».




1 Esfera tetraédrica neolítica (Keith Critchlow: Time Stands Still).
2 Dodecaedro etrusco (500 a.C. Landes-Museum. Mainz, Alemania).
3 Icosaedro romano (Rheinisches Landes-Museum. Bonn).


Estos sólidos a los que se hace referencia son una esfera tetraédrica neolítica, [1], con inscripciones rúnicas lo que podría deducirse su utilización como piedra sagrada empleada en algún ritual mágico entre los celtas o como paredro de un dolmen megalítico: Tres piedras de base y la superficie superior que lo tapa, transformando el espacio interior en un ámbito restringido y mágico, mínima expresión de habitáculo del dios.
También se han encontrado un Dodecaedro etrusco, de aproximadamente el año 500 a.JC., que se conserva en el Landes-Museum, en Mainz de Alemania; así como un Icosaedro romano, conservado en Rheinisches Landes-Museum, de la ciudad de Bonn.

Según Lawlor (1993), Gordon Plummer en su obra The Mathematics of the Cosmic Mind, afirma que la mística hindú asocia el icosaedro con el Purusha, la semilla-imagen de Brahma, el creador supremo, la imagen del hombre cósmico, equivalente al antropocosmos de la tradición esotérica occidental, mientras que el dodecaedro es asociado con Prakiti, el poder femenino de la creación, la Madre Universal, la quintaesencia del universo natural. 


En la mitología hindú, Purusha y Prakiti son la eterna dicotomía creadora, representación mística de la dualidad geométrica entre el icosaedro y el dodecaedro. Diversos historiadores de las Matemáticas (Eves, 1983; Kline, 1992) admiten que las antiguas civilizaciones egipcias y babilónicas tenían conocimiento del cubo, tetraedro y octaedro y que este saber se trasmitiría a Grecia a través de los viajes de Tales y Pitágoras.
Diversos historiadores de las Matemáticas (Eves, 1983; Kline, 1992), por otro lado, admiten que las antiguas civilizaciones, como Egipto y Babilonia, conocían el cubo, tetraedro y octaedro, y que este saber se trasmitió a Grecia durante los viajes de Tales y Pitágoras. 
O bien, que los griegos hubiesen deducido su existencia por semejanza con los polígonos regulares, cuyas construcciones legítimas, con regla y compás, dominaban. Así como en el plano las formas trascendentes son los Polígonos regulares, capaces de quedar inscritos en una circunferencia. Del mismo modo, en el espacio, las figuras poliédricas cumplirían la propiedad de quedar inscritas en una Esfera.
El origen de estas piezas puede ser de índole estético, místico o religioso, pero también es posible que fueran observadas en la naturaleza en la forma de algunos cristales como los de pirita, o en esqueletos de animales marinos como la radiolaria.


 La Cosmogonía poliédrica pitagórica

Proclo en sus Comentarios al Libro I de los Elementos de Euclides atribuye a Pitágoras la construcción de «las figuras cósmicas» (Tannery, 1887), nombre relacionado con su aplicación en la cosmogonía pitagórica que asocia los cuatro elementos primarios: fuego, tierra, aire y agua, con los cuatro sólidos: tetraedro, cubo, octaedro e icosaedro, mientras el dodecaedro sería el símbolo general del universo (González Urbaneja, 2001).

Aecio (basándose en Teofrastro) escribe literalmente: «Por ser cinco las figuras sólidas, denominadas sólidos matemáticos, Pitágoras dice que la tierra está hecha del cubo, el fuego de la pirámide [tetraedro], el aire del octaedro y el agua del icosaedro, y del dodecaedro está compuesta la esfera del todo» (Guthrie, 1984). También Filolao y en parte Simplicio aseguran lo mismo.



Los pitagóricos estaban fascinados por los sólidos regulares, sobre todo por el dodecaedro (debido a la presencia del emblemático pentágono en sus caras) que lo relacionaban de forma mística con el Cosmos y guardaban celosamente el secreto de su construcción, hasta el punto de fraguar la leyenda sobre el terrible fin de quien osó divulgar sus misterios, relatada entre otros autores por Jámblico (1991):

«De Hipasos cuentan que fue uno de los pitagóricos que por haber divulgado por escrito por primera vez la esfera de doce pentágonos [la construcción del dodecaedro inscrito en una esfera] pereció en el mar por impío». Este texto recuerda la descripción apocalíptica de muchos escritores, entre ellos Colerus (1972) acerca de la maldición que cayó sobre Hipasos de Metaponto por haber revelado la aparición de lo irracional. La analogía entre ambas leyendas avalaría la tesis de que el advenimiento de la inconmensurabilidad habría tenido lugar a través del pentágono de las caras del dodecaedro, generador al trazar las diagonales de la estrella pentagonal, llamadaPentagrama místico, que era el símbolo de identificación de los miembros de la secta pitagórica (González Urbaneja, 2000, 2001).

Los poliedros regulares en una repisa situada sobre el techo de una cueva localizada en la cima del monte Kerkis, en Samos, que según una tradición local habría habitado Pitágoras.

El interés de Pitágoras por los poliedros provendría de su observación infantil de las formas regulares geométricas de los minerales, ya que su padre era grabador de piedras preciosas. Además, los cristales de pirita en forma de dodecaedro son abundantes en el sur de Italia, donde vivió Pitágoras tras abandonar Samos

Geometría Sagrada, los sólidos platónicos y las "Divinas Proporciones" (1era arte)

La Geometría Sagrada encierra profundísimo conocimiento milenario que, sostenido por antiguas culturas y conocedores como Platón y Pitágoras, fueron encontrando en determinadas formas, figuras y proporciones perfectas la vía que estimula toda creación y existencia de vida sostenida.

Los poliedros regulares convexos son conocidos con el nombre de sólidos platónicos en honor al filósofo griego Platón (428-347 a.C.), aunque algunos investigadores asignan el cubo, el tetraedro y el dodecaedro a Pitágoras (siglo IV a.C.) y el octaedro e icosaedro a Teeteto (415-369 a.C.). Más allá del exacto origen de estos descubrimientos, veamos qué relación existe entre estas figuras que aparentan ser tan solo eso, y la energía!!

Ya en aquellas épocas se reconocía la presencia vibracional de los 4 elementos, y más. Platón asignó el fuego al tetraedro (el fuego tiene la forma del tetraedro, pues es el elemento mas pequeño, ligero, móvil y agudo), la tierra al cubo (el poliedro mas sólido o de los cinco), el aire al octaedro (para los griegos el aire, de tamaño, peso y fluidez, en cierto modo intermedios, se compone de octaedros) y el agua al icosaedro (el agua, el más móvil y fluido de los elementos, debe tener como forma propia o “semilla”, el icosaedro, siendo el sólido más cercano a la esfera, es por tanto el que con mayor facilidad puede rodar), mientras que al dodecaedro le asignó el Universo (hoy conocido como 5to. elemento o éter).

Geometría Sagrada - Sólidos Platónicos(Johannes Kepler, 1571 – 1630, Alemania)

Estas formas y esquemas geométricos perfectos se encuentran presentes tanto en nuestros procesos biológicos como en nuestros aspectos psicológicos, y aparecen continuamente en la naturaleza. Los panales de abejas tienen forma de prismas hexagonales. En el campo de la medicina vemos que, por ejemplo, el virus de la poliomelitis y de la verruga tienen forma de Icosaedro, las células del tejido epitelial tienen forma de Cubos y Prismas.
En Escocia se han encontrado piedras de formas poliédricas que tiene más de 4.000 años.
Poliedros (Sólidos Platónicos) de yacimiento Neolítico hallados en Escocia.

Muchos minerales cristalizan formando poliedros característicos. Así, por ejemplo, algunos de los más conocidos son:

Galena (mineral del grupo de los sulfuros), Sal Gema, Platino y Diamante, cristalizan formando Hexaedros.
Fluorita, Magnetita, Oro y Cobre, cristalizan formando Octaedros.
Cinabrio, Calcita o Bismuto, cristalizan formando Romboedros.
La Pirita cristaliza formando Dodecaedros.
El Azufre forma Prismas Rómbicos.
El Lapislázuli cristaliza en forma de Rombododecaedros.
El Azufre adquiere forma de Bipirámide Rómbica.
La Discrasita y el Cuarzo adquiere forma de Bipirámide Hexagonal.












    Salvador Dalí, reconocido artista del siglo XX, se manifestó fascinado 
    por los poliedros platónicos, utilizando estas imágenes en varias 
    ocasiones a lo largo de su carrera. Aquí en “La Sagrada Cena” 
    muestra la idea de que la sacralidad (la sagrada es-cena) se 
    encuentra contenida en una especie de nave espacial en 
    forma de dodecaedro. Dicho dodecaedro se presenta a modo 
    de cúpula abrazando a Cristo y a los 12 apóstoles (recordemos que esta 



    No comments:

    Post a Comment